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Abstract

In this paper, a multiscale modelling strategy is
used to study the effect of grain-boundary sliding on
stress localization in a polycrystalline microstructure
with an uneven distribution of grain size. The
development of the molecular dynamics (MD) analysis
used to interrogate idealized grain microstructures with
various types of grain boundaries and the multiscale
modelling strategies for modelling large systems of
grains is discussed. Both molecular-dynamics and finite-
element (FE) simulations for idealized polycrystalline
models of identical geometry are presented with the
purpose of demonstrating the effectiveness of the adapted
finite-element method using cohesive zone models to
reproduce grain-boundary sliding and its effect on the
stress distribution in a polycrystalline metal. The yield
properties of the grain-boundary interface, used in the FE
simulations, are extracted from a MD simulation on a
bicrystal. The models allow for the study of the load
transfer between adjacent grains of very different size
through grain-boundary sliding during deformation. A
large-scale FE simulation of 100 grains of a typical
microstructure is then presented to reveal that the stress
distribution due to grain-boundary sliding during
uniform tensile strain can lead to stress localization of
two to three times the background stress, thus
suggesting a significant effect on the failure properties of
the metal.

Introduction

Uneven stress distribution and stress localization
during deformation are the key factors for fracture and
failure in polycrystalline metals. The inhomogeneous
polycrystalline microstructure that consists of grains of
different size and shape joined together at different angles
and forming various types of grain-boundaries (GBs)
creates inhomogeneous deformation fields at, otherwise,

homogeneous loading. There are a number of factors
responsible for the appearance of inhomogeneous
deformation inside the polycrystal. The co-existence of
grains of different size and orientation with anisotropic
elastic properties is one factor. The difference in the
structure and properties of the GBs between grains of
various missorientations is a second factor for uneven
stress distribution. A third factor is grain-boundary
sliding (GBS), i.e., the rigid translation of one grain
relative to another at the GB interface. When grains
deform, GBS is an inevitable process as a result of the
relative movements and rearrangements of the grains1.
GBS is a strongly inhomogeneous mode of deformation
localized at a very narrow interface layer thus creating
very strong shear forces. This, together with the fact that
the shear strength of a general GB between grains of high
missorientation angle (high-angle GB) is much lower
than the shear strength of the perfect crystal2,3 leads to
GBS being an efficient deformation mode. During GBS
the load transfer between the sliding surfaces is
significantly reduced and the load is redirected to other
places more resistant to sliding. This sliding creates
redistribution of the load and appearance of stress
localization in the microstructure which, in the absence
of an efficient accommodation mechanism, can lead to
void formation and microcracking.   

In this paper, a multiscale modelling strategy is
used to study the effect of GBS for stress localization in
a polycrystalline microstructure. Although they reveal
the system behavior at atomic level resolution, MD
calculations of large systems of grains are
computationally prohibitive to perform, and a more
efficient analysis technique is sought. Finite element
method (FEM) analysis is an obvious choice, however,
the FEM models cannot a-priori simulate the
deformation mechanisms found within the systems of
grains.  Thus, the FEM models must be tuned in order
to reproduce the stress localization observed in the
atomistic simulations. For this purpose, a
polycrystalline model of bimodal grain-size distribution
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was constructed convenient to study by both, MD and
FEM simulations. The MD simulations revealed the
behavior of this model with atomic-scale details.
Additional MD simulations on a bicrystal model were
performed to extract the elastic and yield properties of
the GBs presented in the model. These GB properties
were then used to tune the FEM model to reproduce
closely the behavior of the test model to match with the
MD simulation results. The FEM model can then be
used as part of a multiscale modelling strategy to
extrapolate the MD-derived information to larger scales
to study the failure properties of polycrystalline
materials.

The paper is constructed as follows. First, details of
the configuration model used in both, MD and FE
simulations are discussed. The specific features of the
MD model are presented next. Further, the yield strength
of the GB is defined by using MD simulations on a
bicrystal. This yield strength is used as an input
parameter to the FEM model. Next, the FEM version of
the model is discussed and the results of the FEM
simulation are compared with those from the MD
simulation. Finally a large-scale FEM simulation of a
typical microstructure of 100 grains is analyzed to reveal
the stress distribution due to grain-boundary sliding in a
more general polycrystalline system.

The Configuration Model

To investigate the effect of GBS on the stress
distribution in a polycrystal of inhomogeneous grain size
a configuration model, presented in Figures 1(a) and (b)
was used. This configuration was used in both, MD and
FEM simulations with the additional goal to tune the
parameters of FEM to reproduce as close as possible the
MD simulation. The model is a periodically repeating
unit of a four-grain octagon-square configuration which,
when replicated in x -  and y-directions represents a
polycrystal of a bimodal grain-size distribution. The
advantages of this configuration are the following: (i) the
model allows exploration of the effect of large variations
in the ratio, a:b, between the grain sizes (Figure 1(b)),
which for this study was set to 1:4; (ii) the model is
both simple enough to allow for MD simulation, and
informative enough to be used in the FEM simulation to
compare with the MD results; (iii) the configuration has
a four-fold symmetry (against 90o rotation) which further
simplifies the analysis. In both, MD and FEM
simulations, this configuration is deformed by applying
stress or strain, respectively, along the x-direction. The
deformation conditions are chosen such that the grains
deform elastically while the GBs deform plastically by
GBS. While in the MD model, an interatomic potential
representative for aluminum (Al) is used, to isolate the
effect of crystal anisotropy on the stress distribution an
isotropic media is used for the FE simulation. Though
this would result in some inevitable discrepancy in the
results, it would help to identify the amount of stress
distribution due to GBS alone. Fixed boundary
conditions, shown in Figure (b),  which for an  isotropic

media mimic the periodic boundary conditions in the
MD simulation, shown in Figure (a), were applied in the
FE simulation.

Figure 1: (a) A snapshot of the thermally equilibrated
polycrystalline microstructure designed to study the
effect of GBS on the stress distribution in a polycrystal
of bimodal grain-size by MD simulation. The GBs are
shown as darker (blue) lines of atoms which were
identified to be in disordered (non-crystalline) local
environment. The dashed lines mark the actual system-
box dimensions while, for better visualization the
microstructure is slightly extended using periodic
boundary conditions. (b) Repeating unit used in FE
simulations to model grain structure shown in (a). As
there is no characteristic length-scale in the FE model,
the dimensions in (b) are relative, characterized by a:b =
1:4 consistent with (a).
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The Molecular-Dynamics Model

To investigate the effect of GBS on the stress
distribution in a polycrystal of inhomogeneous grain-
size, atomistic MD simulations were used where the
only predefined input quantity is the interactive potential
between individual atoms which, following Newtonian
dynamics, defines their motion. Embedded-atoms-
method (EAM) many body potential4 fitted to reproduce
closely the elastic and thermodynamic properties of a
perfect Al crystal was applied. A textured or columnar
microstructure model with periodic boundary conditions
in all three dimensions to mimic bulk conditions5 was
ideal for this study. While providing a fully three-
dimensional (3d) treatment of the underlying physics,
this model makes possible to simulate relatively large
grains, because only a few lattice planes need to be
considered in the periodically repeated texture direction.
The texture z-axis is along [110] crystallographic
orientation which enables a realistic dislocation-slip
dynamics along six available slip systems in two {111}
slip planes in each grain6. These slip systems are
adequate to accommodate any two-dimensional
deformation in the x-y plane of the simulated structure.
The grain-boundaries, formed between the grains in this
model are [110] tilt GBs which have been studied
extensively in the past 15 years both, experimentally7-10

and by simulations9-13. In spite of some drawbacks
inherent in this model when compared to a fully 3d
structure, as discussed in reference 14, the model was
proven remarkably successful in predicting the highly
unexpected deformation twinning in nanocrystalline
Al15,16, and the transition from partial to perfect slip in
nanocrystalline fcc metals6,15. Both of these phenomena
have since gained a solid experimental support17-19.

Specifically for this study, a four-grain octagon-
square configuration was used as a test model. A
snapshot of the microstructure after thermal equilibration
at 100 K is given in Figure 1(a). The configuration
represents a periodically repeating unit of large octagonal
grains of size, b  = 80 nm, encapsulating small square
grains of size, a = 20 nm. The thickness of the system
in the texture direction was set equal to 5(1,1,0) atomic
planes (1.43 nm), as in the previous columnar
models5,6,15,16. Within these dimensions, the system
contains 1.7 million atoms. By rotating one of the two
octagonal grains at 90o relative to the other (the
crystallographic orientations are given in Figure 1) the
four 45o inclined diagonal GBs become 90o S99
symmetric-tilt GBs (STGB) for which the atomic
structure in Al is known from the literature10. The two
types of S99 STGBs with (5,5,7) and (7,7,10) GB
plane, (see Figure 1(a)), are structurally very similar and
practically undistinguishable from the point of view of
their mechanical properties, which preserves the four-fold
symmetry (against 90o rotation) of the structure. In
addition, the two small square grains are rotated at 45o

relative to the large grains thus forming high-angle
asymmetric tilt GBs7,8 (Figure 1(a)).

To initiate GB sliding the microstructure was loaded
with uniform tensile stress of 1 GPa along the x-axis in
Figure 1(a). The stress was applied using Parrinello-
Rahman20 constant-stress technique combined with Nose-
Hoover thermostat21 for constant-temperature simulation.
This stress is well below the threshold stress of about 2
GPa6,14 needed to start nucleation of dislocations from
the GBs, which are the only possible dislocation sources
in grains of a nanometer size14,15. Thus, the dislocation
activity, as a possible accommodation mechanism was
readily suppressed. By running the simulations at very
low temperature of 100 K (a value still high enough to
avoid quantum-mechanical effects existing in a real
structure that cannot be captured by the classical MD
technique) GB diffusion, as another possible
accommodation mechanism, was also eliminated. Also,
low temperature prevents grain-growth, a process which
otherwise will be very strong in such a system of a
bimodal grain-size distribution. Restricting the
dislocation activity and GB diffusion helps to map the
MD model better to our FEM simulations which, at the
present stage, do not include these mechanisms.

During loading the system reached an equilibrium
strain of 1.23%. The strain was elastic within the grains
and plastic at the GBs thus initiating GB sliding. At
this stage, to present the stress distribution in the
system, two-dimensional stress-maps were created. The
two-dimensional resolution of the maps is an area of 6x6
lattice parameters (2.43 x 2.43 x 1.43 nm3 volume
including 432 atoms) over which the local stress has
been averaged. The stress maps were stored every 1 ps
over a period of 20 ps after reaching equilibrium (approx.
40,000 MD steps) and then averaged in time to smooth
out the fluctuations always present in a system of such
small size. These averaging procedures in space and time
give a good estimate of the local stress calculated by the
virial-expansion technique in Parrinello-Rahman stress-
calculation20. All the stress-maps for the three stress
components in the x-y plane of deformation (i.e., normal
to the texture z-axis), sxx, s yy and sxy, show distinctive
stress distribution and stress localization which were
then compared with an FEM simulation of the same
configuration, as will be discussed below.

Shear strength of a grain-boundary

Knowledge of the shear strength of the GBs
presented in the system is crucial for understanding the
stress distribution due to GBS. This shear strength is
also required as an input for the FEM model discussed
below. For this purpose, a separate MD simulation of a
bicrystal cubic system, presented in Figure 2, was used.
The same interatomic potential4 as in the octagon-square
model was applied.

The two crystals were crystallographically oriented
in such a way as to form a (7,7,10) S99 STGB (Figure
2). This type of GB, together with the very similar
(5,5,7) S99 STGB, were expected to take most of the
GBS in the octagon-square model (Figure 1) due to the
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maximum resolved shear stress on the planes inclined at
45o to the tensile direction. In the simulation, the system
box with periodic boundary conditions was allowed to
shear in all three directions in addition to expansion or
contraction making it possible to estimate the shear
strain directly. The system was loaded with a symmetric
shear stress (sXY=sYX) to prevent torque forces and to
initiate GBS in the direction consistent with the sliding
direction between the octagons in the octagon-square
model. In addition, a control  simulation was performed
on a perfect crystal of the same size and orientation
([5,5,7]/[7,7,10]/[1,1,0]) to obtain the shear strain of a
perfect crystal under the same simulation conditions. The
perfect-crystal strain was then subtracted from the
bicrystal strain and the resulting strain, due to the GB
alone, is presented in Figure 3 as a function of load for
three different temperatures.

Following Schiotz et al.22 the yield stress was
defined as the stress where the strain starts to depart from
linearity, a definition convenient for use in MD
simulations. For the temperature of T = 100 K, used in
the simulation of the octagon-square model, the obtained
yield stress is sy = 0.2 GPa. As expected, the yield
stress decreases with increasing the temperature of the
system becoming 0.14 GPa at 200 K and 0.12 GPa at
300 K. For comparison, the theoretical shear strength of
a perfect Al crystal was estimated at around 2.8 GPa23.
Thus, the GBs are shown to be more than an order of
magnitude weaker to shear than the perfect crystal grains.
Applying a tensile load of 1 GPa along the x-axis in the
octagon-square model (Figure 1(a)) results in a resolved
shear stress of 0.5 GPa along the diagonal S99 GB
planes. This stress is more than twice as large as the GB
yield stress, as defined here (see Figure 3), but still well
below the shear strength of the perfect crystal. This
ensures a regime of deformation where the GBs would
experience plastic sliding, while the crystal grains would
deform elastically.

FEM simulation

For the finite element simulations, a code “FRANC”
developed at Cornell University24 was used and
specifically designed to study crack initiation and
propagation in metallic polycrystals with explicit
representations of grains and grain boundaries. Each of
the grains in the model was given isotropic, elastic
material properties. The properties used were Young’s
modulus, E = 74.8 GPa, and Poisson’s ratio, n = 0.346.
These values were calculated averages25 from the
anisotropic elastic constants of the interatomic potential4

used in the MD approach. To accurately account for the
entire structure, a repeating unit, similar in geometry to
the one used in the MD simulation was chosen (Figure
1(b)). As in the MD model, the ratio of the lengths of
the grain boundaries is a:b=1:4. Periodic boundary
conditions are necessary to accurately compare results to
those obtained from MD simulations. The boundary and
loading conditions shown in Figure 1(b) are consistent
with periodic boundary conditions for an isotropic
material

In this work, cohesive zone models (CZM) were
used to characterize grain boundary behavior26. Cohesive
zone models assume cohesive interactions of the material
around a grain boundary and permit the appearance of
fracture surfaces in a continuum27. To simulate the
sliding behavior along grain boundaries, two
independent cohesive zone models are chosen for the
normal and shear components of the traction and
displacement. To permit sliding, a perfectly plastic
relationship is chosen for the shear model with yield
stress of 0.2 GPa; this stress is consistent with the
numbers obtained from the MD criterion discussed
previously. To restrict opening, the normal CZM is
specified as having linear elastic behavior with high
stiffness. The analysis is performed for 1.23% applied
strain. This applied strain corresponds to the 1 GPa
applied stress in the MD simulations.

Figure 2: Bicrystal cubic microstructure used to get the
shear strength of S99 STGB formed in the octagon-
square system shown in Figure 1.

Figure 3: GB shear strain vs stress extracted from the
bicrystal model shown in Figure 2. The straight lines,
tangential to the curves at their origin, help to mark the
linear elastic regime. The arrows show the yield stress
for each of the three simulated temperatures defined22 as
the stress where the strain starts to depart from linearity.   



Figure 4: (a-c) Stress contours from the FEM model and the corresponding stress maps (d-e) from the MD model for sxx,
syy, and sxy stress components. Positive and negative stress are indicated in red and blue, respectively, relative to the
average background stress defined as white. In (a), (b), (d) and (e) positive stress is defined as the stress in compression and
negative as the stress in tension compared to the background stress. In (c) and (f) positive and negative shear corresponds to
shear directions at the diagonal GBs defined by Figure 5. The stress localization of syy at the GBs of the small grain,
marked with (1) in (b) and (e) are significant. Marked with (2) in (c) and (f) are also the shear stress concentrations created
at the triple junctions. A few GB dislocations that appeared in the MD simulation and which create disturbances in the GB
stress field are indicated with (3) in (f).

Results

Applying a uniform tensile stress of 1 GPa creates
resolved shear stresses larger than the GB yield stress,
but lower than the yield stress of the grains, producing
plastic sliding at the GBs and elastic deformation in the
grain interiors. GBS reduces the load transfer from one
grain to another and redistributes the stress. The sxx, syy,
and sxy stress distributions for the octagon-square model
are shown in Figures 4(a-f). The results from the FE
simulations Figures 4(a-c) are compared with the stress
maps obtained from the MD simulation Figures 4(d-f).
Both models show that the small square grains take
most of the load produced from the tensile stress (see
Figures 4 (a) and (d)) and from the Poison contraction
perpendicular to the tensile x-direction (see Figures 4 (b)
and (e)). This contraction creates a strong tensile stress at

the sides of the square grains normal to the tensile
direction (regions marked (1) in Figures 4 (b) and (e)).
The close similarity between MD and FEM stress
distribution and the fact that the FEM model was
isotropic indicates that this stress distribution is solely
due to GBS. Through GBS the grains become decoupled
in their elastic deformation. At the GBs, where only two
grains meet, this decoupling creates sliding, but at the
triple junctions where three grains meet strong
incompatibility stresses are produced. This is seen in
both FEM and MD results (Figures 4 (c) and (f)).

The most direct evidence for the presence of GBS is
seen on the MD sxy –stress map in Figure 4 (f). The four
diagonal GBs showed strong shear stress in the two
opposite directions (with stress values presented in red
and blue). Figure 5 gives a schematic representation of
the grain sliding responsible for the observed shear stress
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distribution. Grains (1) and (3) are displacing towards
each other compressing the small grain (5) in the y-
direction, while grains (2) and (4) are displacing apart
and stretching grain (5) in the x-direction. The
displacement of the large grains results in sliding at the
GBs, schematically shown in Figure 5 as couples of
oppositely directed arrows on both sides of the diagonal
GBs. The direction of each arrow corresponds to the
local displacement of each grain at the GB. This
displacement produces strong local shear stress at the
diagonal GBs as seen in Figure 4(c,f).

In spite of the overall good match between the stress
distribution from MD and FEM simulations, there are
also significant mismatches that can be discovered after a
careful examination of Figures 4(a-f). For example, in
the MD simulation there is no full symmetry of the
stresses produced on the two small grains, and there are
some deviations in the stresses on the large grains too
(most pronounced in Figure 4(d)). Possibly, the main
reason for these deviations is the small, but noticeable
anisotropy in the MD  model  which  results  from  the
interatomic potential. This potential was fitted4 to
reproduce closely the elastic constants, including the
anisotropy, of monocrystalline Al. An  anisotropic
FEM  simulation  with  the  proper periodic boundary
conditions is needed to get better comparison.

Another source of mismatch between the two
models is the inevitable existence of GB dislocations in
the MD model. In a polycrystalline MD model,
absolutely perfect GBs are impossible to sustain during
loading, even if they were produced initially. The same
is true for a real material, but at this stage GB
dislocations are not considered in the FEM model. The
GB dislocations have long-range elastic fields that can
significantly modify the stress distribution in close
proximity to the GBs thus altering it from the FEM
result. Such an effect produced by GB dislocations is
marked as (3) in Figure 4(f). Also, the phonon waves,
always existing in finite temperature MD simulation,
create periodic modulations in the MD stress maps
Figures 4 (d-f) which are non-existent in the FEM stress
distributions (Figures 4 (a-c)). Even averaging of the
stress over 20 ps time interval was not enough to
smooth these fluctuations enough. One reason may be
that the periodic boundary conditions imposed on the
system, together with its high configuration symmetry,
create stationary waves which cannot be smoothed out
over such a short period of time. All these factors make
the MD maps shown in Figure 4 much more rich and
complicated compared to the substantially more idealized
FEM results.

The close quantitative match between the stress
distribution obtained from MD and FEM simulations of
the octagon-square configuration (Figure 4) gives
confidence that implementing the properly parameterized
CZM elements in the FEM model correctly reproduces
GBS for a polycrystalline specimen. With this
confidence, FEM can now be used to simulate a typical
polycrystalline structure. For this purpose, a sample with

100 randomly shaped and sized grains, represented by
Voronoi polygons28, was constructed.  The grain
configuration, along with the boundary and loading
conditions, are shown in Figure 6.

Figure 5. A schematic representation of the sliding
directions of the four octagonal grains (bold arrows) and
the inserted stresses on the small square grain in the
middle (dashed arrows). The local displacements of the
material at the GBs, producing GBS are presented by
couples of opposite pointing arrows on both sides of the
boundaries.

Figure 6: Material model with 100 randomly shaped and
sized grains represented by Voronoi polygons28.



Figure 7: Stress contour sxx  for 100-grain material subjected to 1.23% strain, as shown in Figure 6, with some similarities
to the idealized model highlighted.

For 1.23% applied strain, the sxx stress distribution
is shown in Figure 7.  The similarities in grain boundary
behavior between the randomly configured model and the
idealized octagon-square configuration are highlighted.
This larger-scale simulation shows that stress
localization due to GBS are common within the
polycrystals and local stress can exceed several times the
background stress, thus marking spots for a possible
crack nucleation. It is not surprising29 that these stress
concentrations are mostly localized at the triple junctions
where three GBs meet.

Summarizing the results from this section, it was
shown that simulating the behavior of geometrically
identical polycrystalline structures by MD and FEM
techniques can serve two purposes. First, it helps to tune
the parameters of the larger-scale FEM simulation to the
results from the lower-scale MD simulation, thus
incorporating the effects of atomistic mechanisms,
presented in MD, into a continuum model. Second, such
a parallel use of two very different techniques can help to
identify more unambiguously the underlying mechanism
behind a certain phenomenon. In the presented study,

reproducing a stress distribution by isotropic FE
simulation similar to the one obtained from MD
simulation where anisotropy is inherent from the
interatomic potential and cannot be turned off, proves
that GBS played the major role in this case. As a result,
it was shown that even in a material of weak anisotropy,
such as Al, substantial stress localization can be
produced due to GBS.

Concluding Remarks

In the presented study a combined implementation
of two modelling techniques, MD and FEM, has been
demonstrated working at different length-scale
resolutions on two geometrically equivalent systems.
The results, after comparing these two simulations, are
very instructive. First, a method was successfully
applied to match the parameters in the constitutive
equations (in this case the CZM) used in the FEM
model with quantities extracted from the MD simulation
(like GB yield stress). By this method the FEM was
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tuned to the MD simulation. Second, in an MD
simulation where the resolution is at the level of
individual atoms, it is usually very difficult to identify
unambiguously the underlying mechanism responsible
for a given process. By reproducing the MD simulation
experiment by FEM model, where the mechanisms are
implemented through constitutive equations and can be
easily controlled, the underlying mechanism can be
revealed with higher certainty. For example, in the
octagon-square model, presented here, the stress
distribution obtained by MD simulation cannot be
attributed readily to GBS, as there is also anisotropy
which can produce analogous effects. After reproducing
the similar simulation experiment by FEM using
isotropic material parameters, but allowing for GBS with
the equivalent sliding resistance as in the MD model and
comparing the results it becomes possible to identify
what part of the stress distribution is due to GBS alone,
and what part is due to other sources like anisotropy and
GB dislocations.

In this study it has been also demonstrated that
now, because of the advanced computational technology,
high-end MD simulations can overlap well with FEM
simulations on yet small, but still informative enough
systems to allow direct comparison of the results. This
possibility suggests a new way of bridging length and
time scales, which is an alternative to the direct multi-
scale models, where the simulated system is divided into
regions of different length- and time-scales which are
treated with different simulation techniques
simultaneously30. Instead of trying to combine the two,
inherently very different simulation techniques, into one
multi-scale modelling program, it is now possible to use
the overlapping region to tune the larger scale model to
the lower-scale one by direct comparison. This approach
has the advantage that it preserves the uniqueness and the
integrity of each of the models and avoids creating
overcomplicated software codes with very restricted
applicability. This approach also avoids the artifact of
the interface between regions of different length- and
time-scales existing in the direct multi-scale models30.

Finally, the large-scale implementation of the MD-
tuned FEM simulation on a typical 100 grain
microstructure showed that GBS, by redistributing the
load in the system, can produce stress localization
several times higher than the background stress under
external uniform load. These stress localization, under
suitable conditions, may become nuclei for
microcracking and void formation.     
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